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We theoretically study some specific features in high-energy photoemission. At first we discuss the 

breakdown of the electric dipole approximation. The relative importance of electric quadrupole and mag-

netic dipole transitions can be estimated by the photoelectron angular distribution. Next we discuss the re-

coil effects exciting phonon modes around an X-ray absorbing atom. In the single-site approximation where 

elastic scatterings from neighboring atoms are completely neglected, we have free atom recoil energy shift 

without any further approximation within the harmonic approximation. Additional effects like photoelec-

tron diffraction are also studied. Finally we discuss overall spectral features of high-energy XPS spectra by 

using a exponential form. We explicitly calculate intrinsic and extrinsic losses on the basis of quantum me-

chanics, which naturally gives their interference term. 

 

 

1. Introduction 

In contrast to soft X-ray photoelectron spectroscopy 

(XPS), high-energy XPS has been employed to study 

bulk electronic structures. 

High-energy XPS spectra provide new information, 

however they raise some questions about recoil effects [1, 

2, 3] and breakdown of the electric dipole (E1) approxi-

mation [1, 4, 5]. In this paper we discuss some theoreti-

cal problems inherent to high-energy XPS spectra. De-

tailed discussion on the non-dipole effects and recoil 

effects has been given in our previous papers, we, how-

ever, add some comments here. Furthermore some dis-

cussion on overall spectral features of high-energy XPS 

spectra has been given on the basis of a pure quantum 

theory. In particular we describe a new method to take 

both elastic and inelastic (extrinsic+intrinsic) losses into 

account.  

 

2. Nondipole Effects 

Electron-photon interaction operator is usually ex-

panded as 

 

 (1) 

 

where X-ray photons propagate in the x-direction with 

linear polarization in the z-direction. In the soft X-ray 

region, the length of photon propagation vector  is 

much smaller  than  (  is the size of the core 

orbital from which a photoelectron is excited). In this 

case we can use the E1 approximation. In the analyses of 

high-energy XPS spectra the second (E2) and the third 

(M1) terms of eq.(1) have finite contribution since  is 

large enough. More sophisticated expansion of the op-

erator  is irreducible tensor expansion 

 

 (2) 

 

Numerical calculations show that the conventional power 

series expansion (1) works so well even up to quite high 

energy (~10 keV ) [2]. 

How can we estimate the relative importance of E2 

and M1 transitions? Let consider photoelectron angular 

distribution excited from deep 1s or 2p core orbitals in 

free atoms (Ne, Ar, ..). General formula to describe the 

angular distribution is well known as Cooper formula in 

atomic physics [6]. 
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 (3) 

 

 

where  is the total cross section. In the E1 approxima-

tion we have . The asymmetric parameter  

is in the range , and  for the pho-

toemission from a deep s orbital. In the E1 approxima-

tion, we expect symmetric angular distribution around 

, whereas the nondipole effects give rise to 

asymmetric angular distribution. Both theoretical calcu-

lations and experimental results show these asymmetries 

even at  (photoelectron energy) < 1 keV. 

Can we safely use the expansion (1) for the analyses 

of photoemission from extended levels? Typically 

 is satisfied in these cases so that we are afraid 

of complete breakdown of the expansion. We assume 

that the initial level  can be written as linear combi-

nation of atomic orbital 

  

(4) 

 

where  is th atomic orbital (AO) centered on the 

site  and  is the expansion coefficient.  In the 

lowest order approximation where elastic scatterings are 

completely neglected, the photoemission intensity is 

given by 

 

  (5) 

 

where  and  are the one- and two-center terms. 

The former describes the photoemission excited from the 

same atomic site, whereas the latter the interference be-

tween two waves coming from different sites. The ex-

plicit formulas for them are written by 

 

  

 

(6) 

   

 

 

 

 

(7) 

 

 

where AO's  and  are on the same site, but  

and  are on the different sites,  and . We 

have used the matrix elements, 

 

  (8) 

 

 

Even though the initial state is delocalized over 

many-atomic sites, we should only consider the phase 

factor  and the DW factor 

 in eq. (7). In eq. (8) the multipole expansion 

(1) works so well. 

The one-center term is not influenced by the nuclear 

vibrations, but the two-center term is strongly influenced 

by them. The DW factor is the same as those used in 

EXAFS analyses, and is in the order of 10
-2

 a.u.
2
 We thus 

have  at  keV. 

In addition to this, we can expect that random cancella-

tion works in the sum over  and  in eq. (7), which 

allows us to neglect the two center term .  

For randomly oriented systems we can simplify the 

one-center term one step further. We can apply eq. (3) 

even for randomly orienting polyatomic systems such as 

free molecules and polycrystals. The total cross section 

 is now well approximated by well known Gelius 

formula [7, 15] 

 

 (9) 

 

 (10) 

 

where  is the total photoionization cross section of 

th AO. 

 

3. Recoil Effects 

Recent experimental work by Takata et al. clearly 

shows the peak shift to high binding energy side with 

increase of photon energy [3]. The energy shift is well 

explained by 

 

  (11) 

 

where  is the mass of an X-ray absorbing atom . 

This is just free atom recoil energy shift. From physical 

point view, this result looks so funny because the X-ray 
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absorbing atom is tightly bound in the solid. 

As the kinetic energies of the photoelectrons are large 

enough, it is sufficient to take single scatterings into ac-

count. We can also safely use the plane wave approxima-

tion for the photoelectron wave function. In this ap-

proximation we have the photoemission intensity for-

mula as a sum 

 

  (12) 

 

where  describes the direct photoemission intensity 

without suffering elastic scatterings from surrounding 

atoms (single-site approximation). It can be written as 

 

 

 (13) 

 

 

where , and  is defined by eq. (8).  

By neglecting the Franck-Condon effects which play a 

minor role compared with the recoil effects as demon-

strated by explicit numerical calculations [4], the correla-

tion function  is given within harmonic approxima-

tion 

 

 

 

 (14) 

 

 

 

where  is abbreviation of phonon momentum  and 

its polarization , . We designate the ei-

genvector  with the polarization  at the X-ray 

absorbing site  for the dynamical matrix with mo-

mentum . From the correlation function we can cal-

culate the energy shift, peak width and asymmetry 

caused by the recoil effects [4]. The recoil energy shift in 

the single-site approximation thus yields  

 

 (15) 

 

without reference to any approximation  like Debye, 

Einstein approximations [9]. We can see that the simple 

formula (15) works for any harmonic crystals. In typical 

XPS experiments,  is satisfied which yields the 

formula (11). 

In eq. (12)  describes the interference between 

the direct and the single scattering waves, which is ex-

plicitly written 

 

 

 

 

 (16) 

 

 

where  is scattering amplitude at nearby th 

atom with scattering angle . In the harmonic ap-

proximation, we can exactly write  as 

 

 (17) 

 

 

In the above formula  is given by eq. (14), 

 is the Photoelectron Diffraction De-

bye-Waller factor,  is responsible for the inter-

ference between the recoil and the DW damping. The 

above correlation function provides the energy shift 

 

 (18) 

 

when the th  surrounding atom is in the same unit cell 

and is different kind of element. The recoil effects are 

large for photoemission from light elements like Li, Be,.. 

whereas elastic scatterings are strong from heavy ele-

ments like Mn, I,.. A good system to enhance the scatter-

ing effects on the recoil energy shift is thus LiI: The cal-

culated results show that the weighted recoil energy shift 

shows oscillation as a function of  because the inter-

ference term  should oscillate. The recoil energy shift 

caused by the elastic scatterings amounts to 100 meV for 

this model system LiI6, but is less than 10 meV for 

graphite; C is light element and is a weak scatterer [9]. 

The recoil energy shift has very weak temperature de-

pendence through the DW factor in . 

On the other hand the peak width is sensitive to tem-

perature. In the single-site approximation, the peak width 

 is explicitly calculated from the correlation func-

tion  in eq. (14), 

 

 (19) 
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For the detailed estimation, heavy computation is neces-

sary. So far only Debye approximations have been ap-

plied for the practical purposes [3,4]. We, however, ob-

tain very simple formula at high temperature without any 

further approximation, 

 

 (20) 

 

This formula shows no anisotropy in the angular distri-

bution. On the other hand, at low temperature  (

; Debye temperature), the width shows the anisotropy 

as observed in C 1s photoemission from graphite [3]. 

So far our discussion has been focused on the har-

monic solids. Beyond the harmonic approximation, for 

example,  in eq. (14) has additional terms in order 

, . These terms could be detected for large  

in the high-energy photoemission. No detailed discussion 

has been found yet. 

 

4. Overall Spectral Features 

In this section we discuss overall spectral features of 

high-energy XPS spectra. Main XPS band (no loss band) 

measuring photoelectrons with momentum  excited 

by X-ray photons with energy  is described in terms 

of the damping photoelectron wave function  under 

the influence of the optical potential 

  

 (21) 

 

The intrinsic no-loss amplitude  should be close to 1. 

The ground state energies with and without core hole are 

 and . On the other hand single-loss XPS inten-

sity whose loss energy is , is written by 

  

 

 (22) 

 

 

where  is the fluctuation potential responsible for  

intrinsic and extrinsic excitations and  is the causal 

Green's function. In the high-energy region, it can be 

replaced by the corresponding scattering Green's func-

tion. These formulas (21) and (22) can be derived both 

from many-body scattering theory [10] and Keldysh 

Green's function theory [11,12]. In the high-energy pho-

toemission, the extrinsic loss amplitude (the second term 

in  in eq. (22)) is well approximated  

 

 

 

  

(23) 

 

where  is the site of the core function . In the 

low- and intermediate-energy region, say  < 200-300 

eV, the above factorization is a poor approximation. We 

have to take coherent sum, inelastic + elastic inelastic 

+ inelastic elastic+.. for the calculation of the ampli-

tude  [11]. 

To recover the lowest sum  and also 

satisfy the normalization condition, the overall pho-

toemission profile is now written by the exponential 

form with aid of the approximation (23) 

 

  

 (24) 

 

where we have defined an "asymmetric function"  

[13] 

 

  

(25) 

 

This exponential form (24) is known as Landau formula 

which was derived on the basis of classical transport 

theory. Very similar quantum derivation is developed by 

Hedin [13] where time-reversed LEED function is used 

instead of renormalized damping photoelectron wave 

function . This generalization is crucial to discuss 

quantum depth distribution function (DDF) [14]. It is 

important to note that  depends on  as 

shown by eq. (23). 

The amplitude  can be calculated by 

using full multiple scattering formula [15] 
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where matrix  is labeled by a set of atomic site 

, and angular momentum ,  is the 

distance from the site  to the surface along . The full 

multiple scattering is taken into account by use of the 

inverse matrix . The damping of the photoe-

lectron wave is taken into account from first principle 

theory, since  is influenced by the non-Hermitian 

optical potential. The nonlocal optical potential  

have two different parts, 

 

 

The real (Hermitian) part  has substantial effects on 

the -matrix , and the imaginary 

(anti-Hermitian) part  is responsible for the pho-

toelectron wave damping which is usually approximated 

by a constant. In order to derive the multiple scattering 

formula (26), we apply the site -matrix expansion [15]. 

For that purpose it is convenient to use a damping free 

propagator , 

 

 (27) 

 

where  is the kinetic energy operator. This choice 

makes unperturbed plane wave have the complex wave 

number  

 

 

When we determine  as a muffin-tin constant which 

is small enough in each atomic sphere, the phase shift 

calculations are only influenced by the real potential. In 

the high-energy region, we have the well-known formula 

 

 

It is often reasonable to split  in a "low-energy" 

flat part  and a "high-energy" stronger part 

 [13], 

 

 (28) 

 

We thus have from eq. (24) 

 

 

 

 

 (29) 

 

where low- ( ) and high-energy ( ) spectral func-

tions are defined by  

 

 

 

 

 

The low-energy spectral function  describes 

X-ray singularity for metallic systems and recoil energy 

shift, broadening and asymmetry of the main photoemis-

sion band. The high-energy spectral function  

describes the plasmon losses taking both intrinsic and 

extrinsic ones into account, which can be expanded as 

 

 

 (30) 

 

 

 

where  is the 

convolution of  and . Substitution of eq. (28) into 

(27) yields the photoemission intensity from the core site 

, 

 

 

 

 

 

(31) 

 

The first term  describes the main band with no 

plasmon loss, and it also describes the recoil effects and 

asymmetry due to the X-ray singularity. The second term 

 describes one-plasmon loss, and so on. As 

pointed out before  depends on , so that plas-

mon loss bands show the angular dependence. At low 

energy prominent angular dependence of the plasmon 

loss spectra is observed, whereas no angular dependence 

is observed at high-energy excitation (  > 1 keV ) [16]. 

Some experimental results show that the relative plas-

mon loss intensity changes very slowly as a function of 

photoelectron energy [17, 18]. Osterwalder et al. meas-

ured azimuthal PD patterns of Al 2s plasmon loss peak 

 1120 eV) compared with the main Al 2s band, and 

found very similar PD patterns [19, 20] These results 

imply that  should weakly depend on  in the 
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high-energy region. Hedin et al. have shown that the in-

terference terms in  drop out in the high-energy 

limit [13, 21]. Our numerical calculations, however, 

show that the rate of the drop out is very slow. Even at 

 5 keV for Al 2  excitation, the interference term 

still has considerably important contribution. In the en-

ergy range  1-5 keV, the extrinsic amplitude is 

much larger than the intrinsic one. 

 

5. Concluding Remarks 

In this work we investigate some theoretical problems 

in high-energy photoemission. Up to  10 keV, 

widely used multipole expansion (1) works so well. The 

relative importance of the nondipole transition can be 

estimated by Cooper parameters  and .  

The energy shift caused by the recoil processes is well 

described by the formula for free atom recoil even 

though the excited atom is tightly bound in a solid. In the 

photoemission processes phonon modes should be ex-

cited, and the above simple formula is derived without 

use of detailed phonon dispersion. On the other hand the 

recoil broadening depends on the details of projected 

phonon modes, which shows the angular dependence as 

observed for graphite excitation [3]. Photoelectron dif-

fraction from heavy surrounding atoms can give rise to 

recoil energy shifts, which should oscillate as a function 

of photoelectron energy. 

Overall XPS spectral features are conveniently de-

scribed by the exponential formula which includes both 

the intrinsic, extrinsic and their interference in addition 

to X-ray singularities and recoil effects. The interference 

terms drop out very slowly with the photoelectron energy. 

For quantitative studies it is important to obtain reliable 

fluctuation potentials; at present it is far from the goal. 
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